

JFE-HITEN HIGH STRENGTH STEEL PLATES

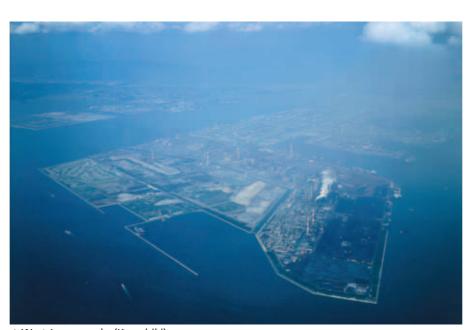
JFE Steel Corporation

INTRODUCTION

In accordance with the technical evolution, structures or pressure vessels are becoming bigger, and more highly pressurized recently. To maintain the safety of those structures, consequently, customers have required high strength steel plates with good weldability and high toughness.

To meet the rapidly growing customer requirements, JFE Steel has developed wide range of high tensile strength steel plates such as 590~980N/mm² class, with their own special characteristics. These are called JFE-HITEN, and JFE Steel wins a popularity in the world.

These products are used in ships, storage tanks, spherical gas holders, pressure vessels, bridges, penstocks, machineries, off-shore structures, etc, and receive valuable reliance from customers.


So, JFE Steel introduces here the features and characteristics of JFE-HITEN series.

CONTENTS

JFE'S High Tensile Strength Steel Plates (JFE-HITEN)	1
JFE's High Tensile Strength Steel Plate Products Specified	
by Typical Standards	2
Grades of JFE-HITEN	3
Manufacturing Process Flow	4
Available Sizes	6
JFE-HITEN STANDARDS ————————————————————————————————————	
JFE-HITEN590, 690 Series	8
JFE-HITEN780, 980 Series	8
High Tensile Strength Steel Plates with High Weldability	·· 10
High Tensile Strength Steel Plates for High Heat-input	
Welding	·· 10
High Tensile Strength Steel Plates for Civil Engineering	
and Industrial Machinery	·· 12
Dimensional Tolerances, Shape, and Appearance	·· 12
Applications and Typical Plate Products	·· 14
Typical Properties of JFE-HITEN	·· 16
Approved or Authorized Products	·· 18
Recommended Practices for Working and Fabrication	·· 19

▲ East Japan works (Keihin)

▲ West Japan works (Kurashiki)

▲ West Japan works (Fukuyama)

JFE's High Tensile Strength Steel Plates (JFE-HITEN)

High Strength

JFE-HITEN is low-alloyed high-strength steel plate manufactured by TMCP, or quenched and tempered. Because JFE-HITEN offers high strength, it results in a significant reduction in the weight of welded structures.

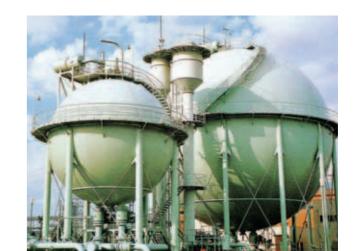
Good Weldability

JFE-HITEN, of which chemical composition is controlled by specific procedure, offers low carbon equivalent and excellent weldability. JFE Steel also supplies welding materials suitable for JFE-HITEN effectively, and thereby enjoys acceptances by customers.

Excellent Notch Toughness

JFE-HITEN offers high notch toughness because it is produced by closely controlling the chemical composition and heat treatment conditions. Application of JFE-HITEN ensures construction of structures providing high reliability against brittle fracture.

Excellent Uniformity and Clean Surface


Rolled on the most modern plate mill under rigid quality control, JFE-HITEN has excellent uniformity in properties, flatness and surface finish. In addition, slab surfaces are carefully scarfed, powerful water jets are used during rolling, and non-oxidizing atmosphere furnaces are used for heat treatment. Consequently, JFE-HITEN has smooth, and clean surfaces.

Good Workability

Because JFE-HITEN features good ductility, it offers not only good formability, but also good machinability, making it easy to drill and cut.

Wide Range of Sizes

JFE-HITEN are available in widths of up to 5,350mm, and in lengths of up to 27,000mm, and then contributes to saving expenses.

JFE'S HIGH TENSILE STRENGTH STEEL PLATE PRODUCTS SPECIFIED BY TYPICAL STANDARDS

Туре с	of Steel	JIS	ASTM	EN	WES **	Ship's class Standard ***	JFE Standard
	590N/mm² Class	G3106 SM570 *	A678 Gr.C Gr.D A841		HW 450 HW 450CF	A47 D47 E47 F47	JFE-HITEN570U2 JFE-HITEN570E JFE-HITEN590S JFE-HITEN590AZ JFE-HITEN590 JFE-HITEN590U2 JFE-HITEN590E
Steel Plates for					HW 490 HW 490CF	A51 D51 E51 F51	JFE-HITEN610 JFE-HITEN610U2 JFE-HITEN610E
Structural Use	690N/mm ² Class				HW 550 HW 620	A56 D56 E56 A63, 63N D63, 63N E63	JFE-HITEN690S JFE-HITEN690 JFE-HITEN690M JFE-HITEN710 JFE-HITEN710M
	780N/mm ² Class	G3128 SHY685 SHY685N SHY685NS	A514 A709 Gr.100		HW 685	A70, 70N D70, 70N E70, 70N F70, 70N	JFE-HITEN780EX JFE-HITEN780S JFE-HITEN780LE JFE-HITEN780M
	980N/mm ² Class				HW 885		JFE-HITEN980S JFE-HITEN980
	590N/mm ² Class	G3115 SPV450 G3124 SEV345	A537 Cl. 2 A738 Gr.B A841	EN10028 P460N	HW 450	KPV46	JFE-HITEN570U2 JFE-HITEN570E JFE-HITEN590 JFE-HITEN590U2 JFE-HITEN590E
Steel Plates for Pressure		G3115 SPV490			HW 490	KPV50	JFE-HITEN610 JFE-HITEN610U2 JFE-HITEN610E
Vessels	690N/mm² Class		A543 Cl. 1		HW 620		JFE-HITEN690M
	780N/mm ² Class		A517 A543 Cl. 2		HW 685		JFE-HITEN780M
	980N/mm ² Class				HW 885		JFE-HITEN980

JFE supplies high tensile strength steel plates based on JIS SM570 with high weldability, which are SM570TMC,

TMC: Produced by TMCP, with high weldability (JIS std.)

LB : Extremely Low carbon Bainite for excellent weldability with fully on-lined process

EX: With high weldability

EG: For high heat input welding

When ordered by WES Designation, corresponding JFE-HITEN approved by WES is applied. Please refer to details

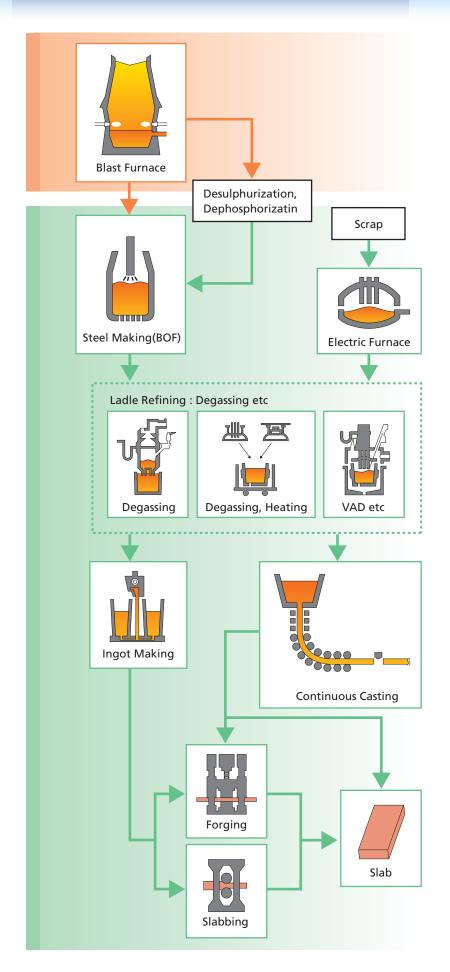
In case of application of the official specification, JFE steel grades are available depending on usages or characteristics. Please consult with JFE.

^{*} SM570TMC-LB, SM570-EX, SM570-EG respectively.

^{**} on page18, "Approved or Authorized Products".

^{***} Ship's class society approval is shown on page 18, "Approved or Authorized Products".

GRADES OF JFE-HITEN

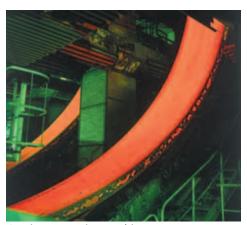

JFE-HITEN composes of various grades ranging widely in tensile strengths, corresponding to broad variety of usages. The grades and features of JFE-HITEN are shown as follows.

Besides the JFE-HITEN series, JFE Steel also produces high strength steel plates to both domestic and overseas specifications - ASTM, ASME, JIS, EN, etc. And thereby, addition or modifications of these standards for each grade can be made according to the customer's requirements. Please consult with JFE Steel.

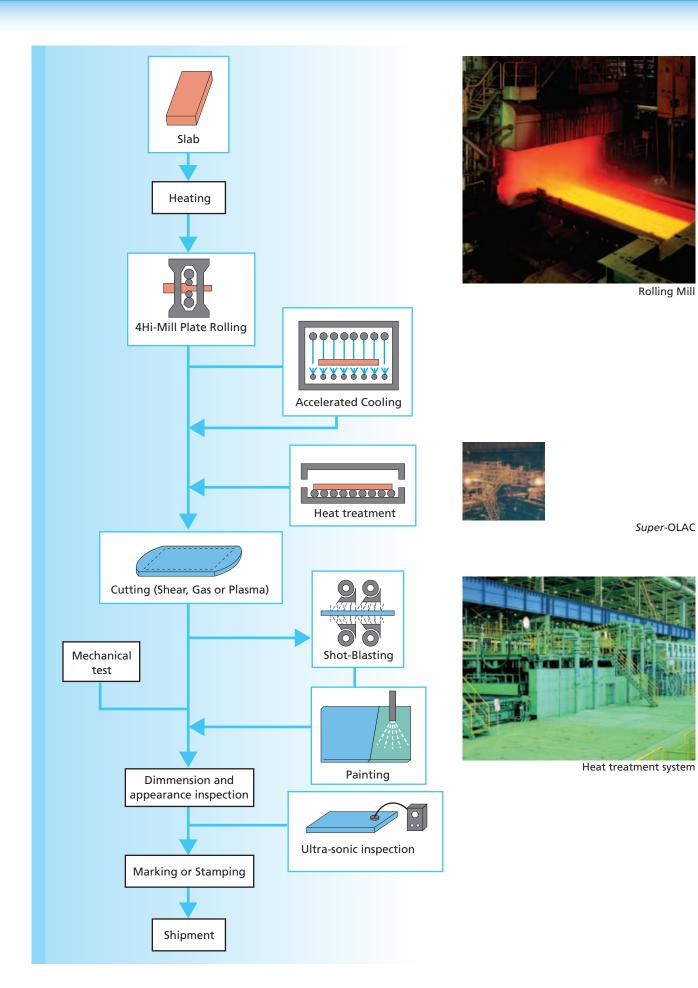
Strength (N/mm²)	Designation	Thickness (mm)	Yield Strength Min. (N/mm²)	Tensile Strength (N/mm²)	Features and Typical Applications
590	JFE-HITEN590 JFE-HITEN610 JFE-HITEN570U2 JFE-HITEN590U2 JFE-HITEN610U2 JFE-HITEN570E JFE-HITEN590E JFE-HITEN610E	6 ~ 150 6 ~ 150 6 ~ 100 6 ~ 75 6 ~ 75 6 ~ 100 6 ~ 75 6 ~ 75	450 490 450 450 490 450 450 490	590 ~ 710 610 ~ 730 590 ~ 710 590 ~ 710 610 ~ 730 570 ~ 700 590 ~ 710 610 ~ 730	For Bridges, Penstocks, Tanks, Offshore structures U2: High Tensile Strength Steel Plates with High Weldability E: High Tensile Strength Steel Plates with High Weldability for High Heat Input Welding
	JFE-HITEN590S JFE-HITEN590SL	6 ~ 40 6 ~ 50	450 450	590 ~ 710 590 ~ 710	S: Without Heat treatment for Civil Engineering and Industrial Machinery SL: Same as above with excellent toughness at low temperature (-40°C)
690	JFE-HITEN690 JFE-HITEN710	6 ~ 100 6 ~ 100	590 620	690 ~ 820 710 ~ 840	Ni-free type for Tanks, Offshore Structures etc.
	JFE-HITEN690M JFE-HITEN710M	6 ~ 100 6 ~ 100	590 620	690 ~ 820 710 ~ 840	Ni type and Low carbon-equivalent for Bridges, Penstocks, Tanks, etc.
	JFE-HITEN690S	6 ~ 25	550	690 ~ 830	With reducing alloying elements and without Heat Treatment, for Civil Engineering and Industrial Machinery
780	JFE-HITEN780M	6 ~ 150	685	780 ~ 930	Ni type and Low Carbon-equivalent for Bridges, Penstocks, Offshore structures etc.
	JFE-HITEN780EX	6 ~ 60	685	780 ~ 930	High Performance with Relaxing Pre-heating for Bridges
	JFE-HITEN780S	6 ~ 160	685	780 ~ 930	Reducing alloying elements for Civil Engineering and Industrial Machinery
	JFE-HITEN780LE	6 ~ 32	685	780 ~ 930	High Weldability and excellent toughness at low temperature (-40 C), for Civil Engineering and Industrial Machinery
980	JFE-HITEN980	6 ~ 120	885	950 ~ 1130	High Strength, High Weldability and Good Toughness for Penstocks
	JFE-HITEN980S	6 ~ 50	885	950 ~ 1130	For Civil Engineering and Industrial Machinery

Note: Chemical compositions described in this catalogue are values by ladle analysis.

MANUFACTURING PROCESS



Blast furnace


Oxygen converter

Continuous casting machine

6000t Forging press

AVAILABLE SIZES

Without Heat Treatment

Product Length: m

																			Pro	oduct	Lengt	h: m
Width	1000	1401	1601	1801	2001	2201	2401	2601	2801	3001	3201	3401	3601	3801	4001	4201	4401	4601	4801	5001	5201	5301
Thickness mm	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	~ 3600	3800	4000	4200	4400	4600	~ 4800	5000	5200	5300	5350
6.0 ~ 6.9																	22	22	19	16	13.5	13.5
7.0 ~ 9.0								25										22	20	16	13.5	13.5
9.1 ~ 11.9																			20	20	20	16
12.0 ~ 13.9																				1	22	16
14.0 ~ 25.0	_																			25		16
25.1 ~ 28.0	_						27										25					16
28.1 ~ 32.0														25					24	23	20	16
32.1 ~ 38.0											25				24	23	22	21	20	19	18	16
38.1 ~ 45.0												24	23	23	20	19	19	18	17	16	16	16
45.1 ~ 50.0				25						23	22	21	20	20	18	17	16	16	15	14	14	14
50.1 ~ 55.0							24	24	21	21	20	19	18	18	16	16	15	14	14	13	13	13
55.1 ~ 60.0							24	22	21	19	19	17	16	16	15	14	13	13	12	12	12	11
60.1 ~ 65.0					24	23	21	20	18	18	17	16	15	15	14	13	12	12	11	11	10	9.5
65.1 ~ 70.0				24	24	22	21	19	18	17	16	15	14	14	13	12	12	11	11	10	10	9.5
70.1 ~ 75.0	24	23	24	23	21	20	18	17	15	15	15	14	13	13	12	11	11	10	10	9.2	9	8.5
75.1 ~ 80.0	23	23	22	21	21	19	18	17	15	14	14	13	12	12	11	11	10	10	9.6	9.2	9	8.5
80.1 ~ 90.0	20	20	20	19	19	17	16	15	14	13	12	11	11	10	10	9.7	9.2	8.8	8.5	8.2	8	7.5
90.1 ~ 100.0	18	18	18	17	17	15	14	13	12	11	11	10	10	9.6	9.1	8.7	8.3	8	7.6	7.3		
100.1 ~ 110.0	16	16	16	16	15	14	13	12	11	10	10	9.7	9.1	9	8.3	8	7.6	7.2	7	6.7 5.8		
110.1 ~ 120.0	15	15	15	14	14	13	12	11	10	10	9.4	8.8	8.4	8	7.6	7.2	6.9 6.0	6.6 5.8	6	6	Not	
120.1 ~ 130.0	14	14	14	13	13	12	11	10	9.8	9.2	8.6	8.2	7.7	7.3	7.0	6.7 <u> 5.8</u>	6	6	5.1	5.3	Avai	lable
130.1 ~ 140.0	13	13	13	12	12	11	10	9.7	9	8.5	8	7.5	7.1	7	6	6	5.1	5.1	5.1	5.3		
140.1 ~ 150.0	12	12	12	11	11	10	9.7	9.1	8.4	7.9	7.4	7	6.7 5.8	6	6	5	5	5				

¹ In case of the diagonal-lined column AB, 'A' shows the maximum product length. And the product length between 'B' and 6.1m can not be provided.

² The minimum product size is as follows; 1 m wide and 3m long.

³ Please consult with JFE prior to ordering the product width between 5,201 and 5,350 mm.

Heat Treated

Product Length : m

																			Pro	oduct	Lengt	:h : m
	Width mm	1000	1601 ~	1801	2001	2201	2401 ~	2601 ~	2801	3001	3201	3401 ~	3601 ~	3801	4001 ~	4201 ~	4401 ~	4601 ~	4801	5001 ~	5201 ~	5301 ~
Thickness mm		1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200	4400	4600	4800	5000	5200	5300	5350
6.0 ~ 6.	.9										22	20	15	13		1						
7.0 ~ 7.	.9											24	22	20	15				Not A	vailal	ole	
8.0 ~ 8.	.9													22	18	16	13	11				
9.0 ~ 9.	.9															22	20	16	12			
10.0 ~ 1	1.9																		22	20	18	
12.0 ~ 1	3.9																				22	
14.0 ~ 20	6.0									25	5											
26.1 ~ 28	8.0																					
28.1 ~ 3	0.0																		24	24	22	Neg
30.1 ~ 3	5.0														24	24	23	22	21	21	20	Negotiable
35.1 ~ 4	0.0												24	23	22	21	20	19	18	18	17	le Raı
40.1 ~ 4	5.0											23	22	20	19	19	18	17	16	16	15	Range
45.1 ~ 50	0.0									23	22	20	19	18	17	17	16	15	15	14	14	
50.1 ~ 60	0.0					24	24	22	20	19	18	17	16	15	14	14	13	13	12	11	11	
60.1 ~ 70	0.0		23	20	24	22	20	19	17	16	15	14	14	13	12	12	11	11	10	10	10	
70.1 ~ 80	0.0	22	20	18	21	19	18	16	15	14	13	13	12	11	11	10	10	9.7	9.3	8.9	8.7	
80.1 ~ 9	0.0	20	18	16	19	17	16	14	13	13	12	11	10	10	9.8	9.4	8.9	8.5	8.3	7.9		
90.1 ~ 10	0.00	18	16	14	17	15	14	13	12	11	10	10	9.8	9.3	8.8	8.4	8.0	7.7	7.3	7.0		
100.1 ~ 1	10.0	16	14	13	15	14	13	12	11	10	9.9	9.4	8.8	8.4	8.0	7.6	7.3	6.9 6.0	6.6 5.7	6.4 / 5.5		
110.1 ~ 12	20.0	15	13	12	14	13	11	11	10	9.7	9.1	8.5	8.1	7.7	7.3	·	6.6 5.7	6.3 5.8	5.2			
120.1 ~ 13	30.0	13	12	11	13	11	11	10	9.5	8.9	8.3	7.9	7.3	7.0	6.7	6.4 5.5	5.2	5.0				
130.1 ~ 14	40.0	11	10	9.7	11	10	9.7	9.4	8.7	8.2	7.7	7.2	6.8	6.5 5.6	5.3	4.8			Not	Avai	lable	
140.1 ~ 1!	50.0	10	10	9.6	10	9.7	9.4	8.7	8.1	7.6	7.1	6.7	6.4 5.5	5.2	4.9							

¹ In case of the diagonal-lined column A B, 'A' shows the maximum product length. And the product length between 'B' and 6.1m can not be provided.

² The minimum product size is as follows; 1 m wide and 3m long.

³ Please consult with JFE prior to ordering the product width between 5,201 and 5,350 mm.

JFE-HITEN STANDARDS

JFE-HITEN590, 690 Series

These series are suitable for a wide range of applications, such as bridges, cylindrical or spherical storage tanks, machine structures etc. By adding alloying elements to the Si-Mn based compositions depending on plate thickness, the carbon equivalent is kept low to improve weldability. Among these, 'M' series are

designed to lower carbon equivalent, resulting in high weldability and low temperature toughness, and therefore, can be applied for construction of penstocks or offshore structures in low temperature regions.

							Chemic	al Compos	sition(%))								Tensile	Test*1)			Bending Te	est (180°)*2)	Charpy Impa	act Test ((2mmV)*3)
Designation	Heat															Yield Poir	nt or Proof	Tensile	Elon	gation		Bend	ling Radius	Test Temp	erature	Absorbed
(Thickness mm)	Treatment	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	В	Thickness (mm)	Ceq	Рсм	Thickness (mm)	Stress (N/mm²)	Strength (N/mm²)	Thickness (mm)	(%)	Test Specimen	Thickness (mm)	Test Specimen No.1	Thickness (mm)	(℃)	Energy (J)
JFE-HITEN590 (6~150)	QT	≦0.16	0.15/0.55	≦1.50	≦0.025	≦0.015	≦0.30	≦1.00	≦0.30	≦0.30	≦0.08	-	t ≤ 50 50 < t ≤ 75 75 < t	≤ 0.44 ≤ 0.46 ≤ 0.48	≤0.26 ≤0.28 ≤0.28	-	≧ 450	590/710	t ≤ 16 16 < t ≤ 50 20 < t	≥20 ≥28 ≥20	No.5 No.5 No.4	_	1.5t	12 < t	-10	≧ 47
JFE-HITEN610 (6~150)	QT	≦0.16	0.15/0.55	≦1.50	≦0.025	≦0.015	≦0.30	≦1.00	≦0.30	≦0.30	≦0.08	-	t ≤ 50 50 < t ≤ 75 75 < t	≦ 0.45 ≤ 0.47 ≤ 0.49	≦0.26 ≤0.28 ≤0.28	t≦75 75 <t< td=""><td>≧ 490 ≧ 470</td><td>610/730</td><td>t≦16 16<t≦50 20<t< td=""><td>≧19 ≥27 ≥19</td><td>No.5 No.5 No.4</td><td>-</td><td>1.5t</td><td>12 < t ≦ 32 32 < t</td><td>-10 -15</td><td>≥ 47 ≥ 47</td></t<></t≦50 </td></t<>	≧ 490 ≧ 470	610/730	t≦16 16 <t≦50 20<t< td=""><td>≧19 ≥27 ≥19</td><td>No.5 No.5 No.4</td><td>-</td><td>1.5t</td><td>12 < t ≦ 32 32 < t</td><td>-10 -15</td><td>≥ 47 ≥ 47</td></t<></t≦50 	≧19 ≥27 ≥19	No.5 No.5 No.4	-	1.5t	12 < t ≦ 32 32 < t	-10 -15	≥ 47 ≥ 47
JFE-HITEN690 (6~100)	QT	≦0.16	≦0.35	≦1.20	≦0.025	≦0.015	≦0.40	≦1.00	≦0.70	≦0.50	≦0.08	≦0.005	t ≦ 50 50 < t	≦ 0.54 ≦ 0.58	- -	t≦75 75 <t< td=""><td>≧ 590 ≥ 570</td><td>690/820</td><td>$t \le 16$ 16 < t ≤ 50 20 < t</td><td>≧17 ≧25 ≧17</td><td>No.5 No.5 No.4</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td>-15 -20 -30</td><td>≥ 47 ≥ 47 ≥ 47</td></t<></td></t<>	≧ 590 ≥ 570	690/820	$t \le 16$ 16 < t ≤ 50 20 < t	≧17 ≧25 ≧17	No.5 No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td>-15 -20 -30</td><td>≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	12 < t ≦ 32 32 < t ≦ 50 50 < t	-15 -20 -30	≥ 47 ≥ 47 ≥ 47
JFE-HITEN710 (6~100)	QT	≦0.16	≦0.35	≦1.20	≦0.025	≦0.015	≦0.40	≦1.00	≦0.70	≦0.50	≦0.08	≦0.005	t ≦ 50 50 < t	≦ 0.55 ≤ 0.59	- -	t≦75 75 <t< td=""><td>≧ 620 ≧ 600</td><td>710/840</td><td>$t \le 16$ 16 < t ≤ 50 20 < t</td><td>≧17 ≧25 ≧17</td><td>No.5 No.5 No.4</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td>-15 -20 -30</td><td>≥ 47 ≥ 47 ≥ 47</td></t<></td></t<>	≧ 620 ≧ 600	710/840	$t \le 16$ 16 < t ≤ 50 20 < t	≧17 ≧25 ≧17	No.5 No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td>-15 -20 -30</td><td>≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	12 < t ≦ 32 32 < t ≦ 50 50 < t	-15 -20 -30	≥ 47 ≥ 47 ≥ 47
JFE-HITEN690M (6~100)	QT	≦0.14	≦0.35	≦1.20	≦0.015	≦0.015	≦0.40	0.30/1.30	≦0.70	≦0.50	≦0.05	≦0.005	t ≦ 50 50 < t	≦ 0.53 ≦ 0.57	- -	t≦75 75 < t	≧ 590 ≥ 570	690/820	t ≦ 16 16 < t ≦ 50 20 < t	≥17 ≥25 ≥17	No.5 No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td>-15 -20 -30</td><td>≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	12 < t ≦ 32 32 < t ≦ 50 50 < t	-15 -20 -30	≥ 47 ≥ 47 ≥ 47
JFE-HITEN710M (6~100)	QT	≦0.14	≦0.35	≦1.20	≦0.015	≦0.015	≦0.40	0.30/1.30	≦0.70	≦0.50	≦0.05	≦0.005	t ≦ 50 50 < t	≦ 0.53 ≦ 0.57	- -	t≦75 75 <t< td=""><td>≧ 620 ≧ 600</td><td>710/840</td><td>t ≦ 16 16 < t ≦ 50 20 < t</td><td>≧ 17 ≧ 25 ≧ 17</td><td>No.5 No.5 No.4</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td>-15 -20 -30</td><td>≥ 47 ≥ 47 ≥ 47</td></t<></td></t<>	≧ 620 ≧ 600	710/840	t ≦ 16 16 < t ≦ 50 20 < t	≧ 17 ≧ 25 ≧ 17	No.5 No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td>-15 -20 -30</td><td>≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	12 < t ≦ 32 32 < t ≦ 50 50 < t	-15 -20 -30	≥ 47 ≥ 47 ≥ 47

Note: *1) Test method: JIS Z 2241, Test specimen: JIS Z 2201

JFE-HITEN780 Series and JFE-HITEN980

780M has better low-temperature toughness and higher weldability than 780F through its reduced carbon equivalent, and been widely applied to bridges, penstocks, offshore structures and others, including low temperature applications.

As the development of higher strength steel has made it possible to reduce the weight of structures, JFE has

furthered this trend by introducing its highest-class steel plate 980.

Providing good weldability by optimizing alloying elements, 980 is suitable for penstocks and other applications in a low temperature environment where good toughness is required.

							Chem	nical Con	nposition((%)										Tensile Tes	st*1)			Bending Te	est (180°)*2)	Charpy Impa	ct Test ((2mmV)*3)
Designation (Thickness mm)	Heat Treatment	Thickness (mm)	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	Nb	В	Thickness (mm)	Ceq	Рсм	Yield Poin Thickness (mm)	Stress (N/mm²)	Tensile Strength (N/mm²)	Thickness (mm)	ongation (%) Si		Bend Thickness (mm)	1 	Test Tempe Thickness (mm)	erature (°C)	Absorbed Energy (J)
JFE-HITEN780M (6~150)	QT	t ≦ 100 100 < t							0.30/1.50 0.30/1.50	1			- -	≦0.005 ≦0.005	$t \le 50$ 50 < $t \le 100$ 100 < t	≦0.53 ≤0.57 ≤0.62	≦0.30 ≦0.32	t≦75 75 <t< th=""><th>≧ 685 ≥ 665</th><th>780/930</th><th>t ≦ 16 16 < t ≦ 50 20 < t</th><th>≧24</th><th>No 5</th><th>t≦32 32 < t</th><th>1 2 O+ 1</th><th>$\begin{array}{c} 12 < t \leq 32 \\ 32 < t \leq 50 \\ 50 < t \end{array}$</th><th>-20 -25 -35</th><th>≥ 47 ≥ 47 ≥ 47</th></t<>	≧ 685 ≥ 665	780/930	t ≦ 16 16 < t ≦ 50 20 < t	≧24	No 5	t≦32 32 < t	1 2 O+ 1	$\begin{array}{c} 12 < t \leq 32 \\ 32 < t \leq 50 \\ 50 < t \end{array}$	-20 -25 -35	≥ 47 ≥ 47 ≥ 47
JFE-HITEN980 (6~120)	QT	-	≦0.14	≦0.35	≦1.20	≦0.010	≦0.005	≦0.70	≦4.00	≦0.80	≦0.80	≦0.15	≦0.02	≦0.005	t ≤ 50 50 < t ≤ 100 100 < t	≦0.59 ≤0.62 ≤0.71		t≦75 75 < t≦100 100 < t		950/1130 950/1130 930/1110	16 < t ≦ 50		No.5 No.5 No.4	t≦32 32 <t< th=""><th>2.0t 2.5t</th><th>12 < t</th><th>-60</th><th>≧ 47</th></t<>	2.0t 2.5t	12 < t	-60	≧ 47

Note: *1) Test method: JIS Z 2241, Test specimen: JIS Z 2201

8 JFE-HITEN 9

 $[\]ast 2)$ Test method: JIS Z 2248, Test specimen: JIS Z 2204

^{*3)} Test method/Test specimen: JIS Z 2242

^{*2}) Test method: JIS Z 2248, Test specimen: JIS Z 2204

^{*3)} Test method/Test specimen: JIS Z 2242

JFE-HITEN STANDARDS

High Tensile Strength Steel Plates with Good Weldability

'U2' series, whose carbon content and Pcm values are controlled to less than 0.09 and 0.20% respectively along with carefull controllor tramp elements exhibits outstanding resistance to HAZ (Heat Affected Zone) hardening and weld cracking. These properties are required for the fabrication of structures such as spherical

tanks, penstocks and others, giving 'U1','U2' series a good reputation with customers. JFE-HITEN 780EX, developed by the same product design as above, has high strength and good weldability especially for bridges.

								Chem	ical Com	position(%)								Tensile Te	st*1)			Bending Te	est (180°)*2)	Charpy Imp	act Test	(2mmV)*3)
Designation	Heat														_		Yield Poin	t or Proof	Tensile	Elc	ngatio	n			Test Temp	erature	Absorbed
(Thickness mm)	Treatment	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	Nb	В	Thickness (mm)	Ceq	Рсм	Thickness (mm)	Stress (N/mm²)	Strength (N/mm²)	Thickness (mm)	(%)	Test Specimen	Thickness (mm)	Test Specimen No.1	Thickness (mm)	(℃)	Energy (J)
JFE-HITEN570U2 (6~100)	QT	≦0.09	0.15/0.55	≦1.60	≦ 0.025	≦0.010	≦0.30	≦0.30	≦0.30	≦0.30	≦0.06	≦0.03	_	-	_	≦0.20	$t \le 16$ $16 < t \le 40$ $40 < t \le 75$ 75 < t		570/700	t ≤ 16 16 < t ≤ 50 20 < t		No.5	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t</td><td>- 5</td><td>≧ 47</td></t<>	1.5t 2.0t	12 < t	- 5	≧ 47
JFE-HITEN590U2 (6~75)	QT	≦0.09	0.15/0.55	1.20/1.60	≦ 0.025	≦0.010	≦0.30	≦0.30	≦0.30	≦0.30	≦0.06	≦0.03	_	-	_	≦0.20		≧ 450	590/710	t ≦ 16 16 < t ≦ 50 20 < t	1	No.5	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t ≤ 32 32 < t ≤ 50 50 < t</td><td></td><td>≥ 47 ** ≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	12 < t ≤ 32 32 < t ≤ 50 50 < t		≥ 47 ** ≥ 47 ≥ 47 ≥ 47
JFE-HITEN610U2 (6~75)	QT	≦0.09	0.15/0.55	1.20/1.60	≦ 0.025	≦0.010	≦0.30	≦0.30	≦0.30	≦ 0.30	≦0.06	≦0.03	_	-	_	≦0.20		≧ 490	610/730	t≦16 16 <t≦50 20<t< td=""><td>≧19 ≥27 ≥19</td><td>No.5</td><td>t≦32 32<t< td=""><td>1.5t 2.0t</td><td>$\begin{array}{c} 12 < t \leq 32 \\ 32 < t \leq 50 \\ 50 < t \end{array}$</td><td>0 - 5 -15 -25</td><td>≥ 47 ** ≥ 47 ≥ 47 ≥ 47</td></t<></td></t<></t≦50 	≧19 ≥27 ≥19	No.5	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>$\begin{array}{c} 12 < t \leq 32 \\ 32 < t \leq 50 \\ 50 < t \end{array}$</td><td>0 - 5 -15 -25</td><td>≥ 47 ** ≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	$ \begin{array}{c} 12 < t \leq 32 \\ 32 < t \leq 50 \\ 50 < t \end{array} $	0 - 5 -15 -25	≥ 47 ** ≥ 47 ≥ 47 ≥ 47
JFE-HITEN780EX (6~60)	QT	≦0.09	≦0.55	0.60/1.50	≦ 0.015	≦0.010	≦0.50	0.30/1.50	≦0.80	≦0.60	≦0.05	≦0.03	≦0.005	t ≦ 34 34 < t ≦ 60		≦0.23 ≤0.25	t ≦ 50 50 < t ≦ 60	≥ 685 ≥ 665	780/930 760/910	t≦16 16 < t≦50 20 < t		1	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t ≦ 32 32 < t ≦ 50 50 < t</td><td></td><td>≥ 47 ≥ 47</td></t<>	1.5t 2.0t	12 < t ≦ 32 32 < t ≦ 50 50 < t		≥ 47 ≥ 47

Note: *1) Test method: JIS Z 2241, Test specimen: JIS Z 2201

*2) Test method: JIS Z 2248, Test specimen: JIS Z 2204

*3) Test method/Test specimen: JIS Z 2242

*WES + Cu/13 (Cu \ge 0.30)

High Tensile Strength Steel Plates for High Heat-input Welding

This series offer extremely low susceptibility to weld cracking by keeping their carbon content and Pcm values in low levels. They also possess superior HAZ toughness, even when high heat input welding such as

electro-gas welding is applied in the fabrication of tanks and other structures.

							Chen	nical Com	position(%)							Tensile Tes	t*1)			Bending Te	est (180°)*2)	Charpy Imp	act Test (2	2mmV)*3)
Designation	Heat														Yield Poi	nt or Proof	Tensile	Ele	ongation	1	Ben	ding Radius	Test Temp		Absorbed
(Thickness mm)	Treatment	С	Si	Mn	P	S	Cu	Ni	Cr	Мо	V	Nb	В	Рсм	Thickness (mm)	Stress (N/mm²)	Strength (N/mm²)	Thickness (mm)	(%)	Test Specimen	Thickness (mm)	Test Specimen No.1	Thickness (mm)	(℃)	Energy (J)
JFE-HITEN570E (6~100)	QT	≦0.09	0.15/0.55	≦1.60	≦ 0.020	≦0.010	≦0.30	≦0.30	≦0.30	≦0.30	≦0.06	≦0.03	_	≦0.20	$t \le 16$ $16 < t \le 40$ $40 < t \le 75$ 75 < t	≥460 ≥450 ≥430 ≥420	570/700	$t \le 16$ 16 < t \le 50 20 < t	≥ 20 ≥ 28 ≥ 20	No.5 No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>12 < t</td><td>- 5</td><td>≧ 47</td></t<>	1.5t 2.0t	12 < t	- 5	≧ 47
JFE-HITEN590E (6~75)	QT	≦0.09	0.15/0.55	1.00/1.60	≦0.020	≦0.010	≦0.30	≦0.30	≦0.30	≦0.30	≦0.06	≦0.03	_	≦0.20	-	≧450	590/710	$t \le 16$ 16 < $t \le 50$ 20 < t	≥ 20 ≥ 28 ≥ 20	No.5 No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>$6 t \leq 20 \\ 20 < t \leq 32 \\ 32 < t \leq 50 \\ 50 < t$</td><td>5 - 5 -10 -20</td><td>≥ 47 ** ≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	$ 6 t \leq 20 \\ 20 < t \leq 32 \\ 32 < t \leq 50 \\ 50 < t $	5 - 5 -10 -20	≥ 47 ** ≥ 47 ≥ 47 ≥ 47
JFE-HITEN610E (6~75)	QT	≦0.09	0.15/0.55	1.00/1.60	≦0.020	≦0.010	≦0.30	≦0.30	≦0.30	≦0.30	≦0.06	≦0.03	-	≦0.20	_	≧490	610/730	$t \le 16$ 16 < t \le 50 20 < t	≧ 19 ≧ 27 ≧ 19	No.5 No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>$6 t \le 20 \\ 20 < t \le 32 \\ 32 < t \le 50 \\ 50 < t$</td><td>0 - 5 -15 -25</td><td>≥ 47 ** ≥ 47 ≥ 47 ≥ 47</td></t<>	1.5t 2.0t	$ 6 t \le 20 \\ 20 < t \le 32 \\ 32 < t \le 50 \\ 50 < t $	0 - 5 -15 -25	≥ 47 ** ≥ 47 ≥ 47 ≥ 47

Note: *1) Test method: JIS Z 2241, Test specimen: JIS Z 2201

*2) Test method: JIS Z 2248, Test specimen: JIS Z 2204

*3) Test method/Test specimen: JIS Z 2242

10 JFE-HITEN 11

JFE-HITEN STANDARDS

High Tensile Strength Steel Plates for Civil Engineering and Industrial Machinery

JFE-HITEN 590S/690S are economical and have good weldability with high toughness because they are produced by controlled rolling or TMCP with optimum chemical composition. They are, suitable for civil engineering and industrial machinery, even in cold regions.

JFE-HITEN 780S/980S quenched and tempered steel plates come in thicknesses of up to 50mm with alloying elements reduced to minimum amounts to provide good weldability and high economy. They suite

for uses in civil engineering and industrial machinery.

JFE-HITEN 780LE is manufactured by using JFE's leading technologies including controlled rolling and minimum micro-alloying, consequently, providing good weldability and high toughness over in low temperature (-40°C) regions.

									Chem	ical Com	position((%)							Tensile Te	st*1)			Bending Te	est (180°)*2)	Charpy Imp	act Test	(2mmV)*3)
Designation	Heat																Yield Poin	t or Proof	Tensile	Elc	ngatio	n	Bend	ling Radius	Test Temp	erature	Absorbed
(Thickness mm)	Treatment	Thickness (mm)	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V	Nb	В	Ceq	Рсм	Thickness (mm)	Stress (N/mm²)	Strength (N/mm²)	Thickness (mm)	(%)	Test Specimer	Thickness (mm)	Test Specimen No.1	Thickness (mm)	(℃)	Energy (J)
JFE-HITEN590SA (6~40)	CR or	-	≦ 0.18	≦ 0.55	≦2.00	≦0.030	≦ 0.020	Other	elements	are add	ed as req	uired.			≦ 0.45	_	_	≧ 450	590/710	t≦16 16 <t≦50< th=""><th>≧20 ≥28</th><th>No.5 No.5</th><th>t≦32</th><th>1.5t</th><th>-</th><th>-</th><th>-</th></t≦50<>	≧20 ≥28	No.5 No.5	t≦32	1.5t	-	-	-
JFE-HITEN590SB (6~40)	TMCP	-	≦ 0.18	≦ 0.55	≦2.00	≦0.030	≦ 0.015	Other	elements	are add	ed as req	uired.			≦ 0.45	-	_	≦ 450	390/710	20 < t	= 26 ≥ 20	No.4	32 < t	2.0t	12 < t	-10	≧ 47
JFE-HITEN590SL (6~50)	CR or TMCP	-	≦ 0.16	0.20/0.55	0.80/1.60	≦0.030	≦ 0.015	-	-	_	≦0.35	≦0.08	≦0.05	-	≦ 0.46	≦0.22	t≦32 32 <t< td=""><td>≧ 450 ≧ 430</td><td>590/710 570/705</td><td>t ≦ 16 16 < t ≦ 50 20 < t</td><td> </td><td>No.5 No.5 No.4</td><td>-</td><td>1.5t</td><td>6≦t≦36 36<t< td=""><td>-40 -20</td><td>≥ 27 ** ≥ 27</td></t<></td></t<>	≧ 450 ≧ 430	590/710 570/705	t ≦ 16 16 < t ≦ 50 20 < t		No.5 No.5 No.4	-	1.5t	6≦t≦36 36 <t< td=""><td>-40 -20</td><td>≥ 27 ** ≥ 27</td></t<>	-40 -20	≥ 27 ** ≥ 27
JFE-HITEN690S (6~25)	CR or TMCP	-	≦ 0.15	≦ 0.55	≦2.00	≦0.030	≦ 0.015	Other e	elements suc	h as Nb, V	and Ti are	added as re	quired.		≦0.50	_	-	≧ 550	690/830	t≦16 16 <t< th=""><th>≧ 17 ≧ 25</th><th>No.5 No.5</th><th>_</th><th>1.5t</th><th>12 < t</th><th>-10</th><th>≧ 47</th></t<>	≧ 17 ≧ 25	No.5 No.5	_	1.5t	12 < t	-10	≧ 47
		t ≦50	≦ 0.25	≦ 0.55	≦1.60	≦0.030	≦ 0.015	-	-	≦0.70	≦0.30	≦0.10	Ti:0.005/0.02	≦0.005	≦0.53	-				t≦16	> 16	No.5			6 < t ≦ 20	_	-
JFE-HITEN780S (6~160)	QT	50 < t ≦100	≦0.20	≦ 0.55	≦1.60	≦0.030	≦0.015	≦0.50	≦0.50	≦1.50	≦0.60	≦0.10	Ti:0.005/0.02	≦0.005	≦0.61	-	t ≦ 75 75 < t ≦ 160	≧ 685 ≥ 665	780/930	16 < t ≦ 32 20 < t		No.5 No.4	t≦32 32 <t< td=""><td>1.5t 2.0t</td><td>$\begin{array}{c} 12 < t \leqq 20 \\ 20 < t \leqq 32 \end{array}$</td><td>- 5 -15</td><td>≧ 35 ≥ 35</td></t<>	1.5t 2.0t	$\begin{array}{c} 12 < t \leqq 20 \\ 20 < t \leqq 32 \end{array}$	- 5 -15	≧ 35 ≥ 35
		100 <t td="" ≦160<=""><td>≦0.18</td><td>≦ 0.55</td><td>≦1.60</td><td>≦0.030</td><td>≦0.015</td><td>≦0.50</td><td>≦0.50</td><td>≦1.50</td><td>≦0.60</td><td>≦0.10</td><td>Ti:≦0.03</td><td>≦0.005</td><td>≦ 0.65</td><td>-</td><td></td><td></td><td></td><td>20 < t</td><td>= 10</td><td>10.4</td><td></td><td></td><td>32 < t</td><td>-20</td><td>≧ 35</td></t>	≦0.18	≦ 0.55	≦1.60	≦0.030	≦0.015	≦0.50	≦0.50	≦1.50	≦0.60	≦0.10	Ti:≦0.03	≦0.005	≦ 0.65	-				20 < t	= 10	10.4			32 < t	-20	≧ 35
JFE-HITEN780LE	TMCP	t≦19	≦ 0.20	≦0.40	≦1.40	≦0.025	≦0.015	_	_	≦0.20	≦0.15	≦0.08	_	≦0.005	≦ 0.40 *	_	_	≧ 685	780/930	t ≦ 16 16 < t ≦ 32		No.5 No.5	_	1.5t	6≦t≦32	-40	≥ 40 ***
(6~32)	TIVICI	19 < t	= 0.20	= 0.40	=1.40	= 0.023	≡ 0.013			= 0.20	= 0.13	= 0.00		= 0.003	≦ 0.43 *			= 003	700/330	20 < t	= 24 ≥ 16	No.4		1.50	0 = 0 = 32		= 40
JFE-HITEN980S (6~50)	QT	-	≦ 0.18	≦ 0.35	≦1.20	≦0.020	≦ 0.015	≦0.70	≦2.00	≦0.80	≦0.80	≦0.08	≦0.02	≦0.005	≦ 0.65	_	-	≧ 885	950/1130	$t \le 16$ 16 < t \le 50 20 < t		No.5 No.5 No.4	t ≦ 32 32 < t	2.0t 2.5t	$12 < t \le 20$ $20 < t \le 32$ 32 < t		≥ 35 ≥ 35 ≥ 35

Note: *1) Test method: JIS Z 2241, Test specimen: JIS Z 2201

* C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5

Dimensional Tolerance, Shape, and Appearance

Designation	Dimensional Tolerance, Shape, and Appearance
590, 590U2, 590E 610, 610U2, 610E 690, 690M, 710, 710M 780M 980	Dimensional tolerances of thickness, width, and length, flatness, and shape are in accordance with JIS G 3115.
570U2, 570E 590S, 590SL 690S 780S, 780LE, 780EX 980S	Dimensional tolerances of thickness, width, and length, flatness, and shape are in accordance with JIS G 3193.

Above specifications are negotiable in order to meet customer's requirement.

12 JFE-HITEN 13

^{*2)} Test method: JIS Z 2248, Test specimen: JIS Z 2204

^{*3)} Test method/Test specimen: JIS Z 2242

APPLICATIONS AND TYPICAL PLATE PRODUCTS

Bridges

JFE-HITEN570U2 JFE-HITEN570E JFE-HITEN690M JFE-HITEN780M

JFE-HITEN780EX

Oil Tanks

JFE-HITEN610
JFE-HITEN610U2
JFE-HITEN610E

Various Spherical Holders

JFE-HITEN590, 610 JFE-HITEN610U2

Various Offshore Structures

JFE-HITEN590, 610 JFE-HITEN590, 610U2 JFE-HITEN690M JFE-HITEN780M

Gates, Penstocks

JFE-HITEN590, 610 JFE-HITEN590, 610U2 JFE-HITEN780M JFE-HITEN980

Civil Engineering and Industrial Machinery

JFE-HITEN590S

JFE-HITEN690S

JFE-HITEN780S

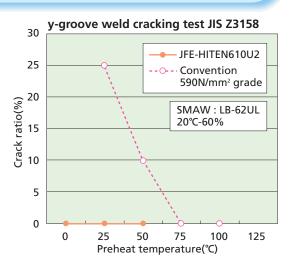
JFE-HITEN780LE

JFE-HITEN980S

TYPICAL PROPERTIES OF JFE-HITEN

JFE-HITEN 610U2 — 590N/mm² Class High Tensile Strength **Steel Plates with good Weldability**

Chemical composition (%) Tinkness C Si Mn Р ς Рсм Designation (mm) JFE-HITEN610U2 75 0.08 0.26 1.44 0.005 0.002 0.18 Conventional 0.13 0.26 1.29 0.011 0.003 0.23 590N/mm²grade


Other alloying elements are added.

Mechanical properties of plate

	Ter	sile test			Charp	y impact test
Designation	YS (N/mm²)	TS (N/mm²)	EI (%)	Temp. (℃)	Dir.	Absorbed energy (J)
JFE-HITEN610U2	534	624	31*	-10	L	275
Conventional 590N/mm ² grade	566	668	50	-10	L	269

* JIS No.4

(%)

JFE-HITEN 610E — 590N/mm² Class High Tensile Strength Steel **Plates for High Heat-input Welding**

Chemical composition

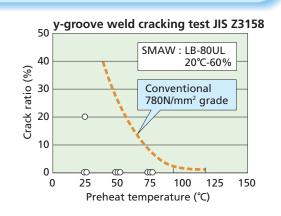
circiincai com										
Designation	Tinkness (mm)	С	Si	Mn	Р	S	Рсм			
JFE-HITEN610E	25	0.08	0.20	1.33	0.008	0.003	0.17			

Other alloying elements are added.

Mechanical properties of electro-gas arc welded joint

Welding o	ondition		Tensile strength	Charpy impact test Absorbed energy (J)			
Groove Wel		Heat input	of welded joint (N/mm²)	Test location	Test temp.(°C)		
comigaration	material	(kJ/mm)		location	0	- 25	
35°	617		617	Weld metal	113	82	
55	DWS-1LG	12	618	Fusion line	244	171	
(mm)			010	Center of HAZ	271	171	

JFE-HITEN 780EX — 780N/mm² Class High Tensile Strength **Steel Plates with High Weldability**


Chemical composition (%) Tinkness C Si Mn Р S Рсм Designation (mm) JFE-HITEN780EX 1.05 0.004 0.001

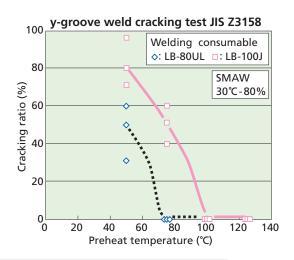
Alloying elements such as Cu, Ni, Cr are add.

Mechanical properties of plate

meenamear properties or plate									
Ter	sile test		Charpy impact test						
YS TS (N/mm²) (N/mm²)			Temp. (℃)	Dir.	Absorbed energy (J)				
769 844		24	-40	L	286				

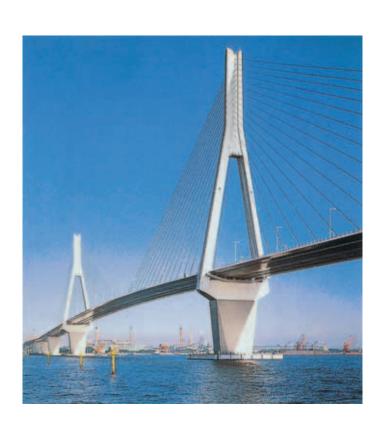
* JIS No.4

JFE-HITEN 980 — 980N/mm² Class High Tensile Strength Steel Plates with High Weldability


Chemical composition								
	Tinkness (mm)	С	Si	Mn	Р	S	Рсм	
	75	0.09	0.25	1.14	0.005	0.001	0.27	

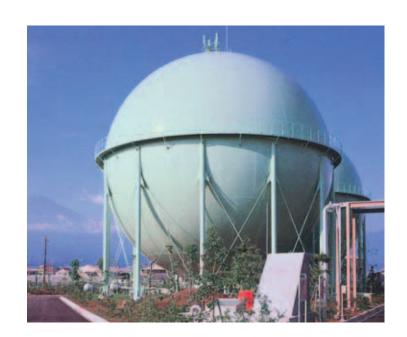
Alloying elements such as Cu, Ni, Cr are added.

Mechanical properties of plate


Tensil	e test (1/4	t)	Ch	Charpy impact test (1/4t)			
YS (N/mm²)	EI* (%)			Absorbed energy (J)			
	25	0	Т	208			
930	977	25	-60	Т	158		

*JIS No.4

Mechanical properties of submerged arc welded joint


Welding condition	Tensile strength	Charpy impact test				
Groove Weldin configuration materia		Heat input (kJ/mm)	of welded joint (N/mm²)	Notch location	Test temp. (°C)	Absorbed energy (J)
50°				Weld metal		109
75 66	PFH- 100J/US-	4.5	977	Fusion line	-10	136
Root Gap 0~1 60° (mm)	100J		981	Center of HAZ		248

APPROVED OR AUTHORIZED PRODUCTS

Japan Welding Engineering Society (WES)

JFE Designation	WES Approval				
JFE Designation	VVE3 Approvai				
590	WES 3001				
610	WES 3001				
590\$	WES 3001				
590U2	WES 3001,3009				
610U2	WES 3001,3009				
590E	WES 3001,3009				
610E	WES 3001,3009				
690	WES 3001				
710	WES 3001				
690M	_				
690\$	_				
780M	WES 3001				
780\$	_				
980	WES 3001				
9805	_				

Ship's Class Society

Grades of	Society							
Strength	NK	LR	KR					
570	A/D/E/F47	D/E46	A/D/E46					
610	A/D/E/F51	D/E50						
670	A/D/E56	D/E55						
720	A/D/E63	D/E62						
	A/D63N							
770	A/D/E/F70	D/E69						
	A/D/E/F70N							

RECOMMENDED PRACTICES FOR WORKING AND FABRICATION

1. General

The JFE-HITEN series, despite their high strength, offers outstanding workability. In fabricating JFE-HITEN steel plates, however, it is recommended that the manufacturing process should be taken into full consideration in order not to impair mechanical properties.

2. Marking

Plates subjected to bending, should be avoided from chisel or punch marks on the outer surface because cracking might be induced.

3. Cutting and Drilling

Plates should not be punched for holes. Drilling is recommended. JFE-HITEN steels can be gas-cut as easily as mild steel. Gas cutting produces a hardened layer up to 2 mm in depth. When bending plates, particularly those of 690N/mm² or higher tensile-strength steels, removal of the hardened layer by grinding or other methods is recommended. Gas-cut edges supposed to be welded do not require this removal since the hardened layer is removed by the weld penetration.

4. Cold Working

Because of their high strength, JFE-HITEN steel plates require a larger bending force than mild steel, but their high ductility makes them easy to cold works.

High-strength steel plates exhibit a greater spring back than mild steel, so attention is necessary during the working process. It is desirable to bend these plates parallel to the direction of rolling, with a bend to a smaller radius, edges should be rounded by grinding, as the crack susceptibility of a plate edge increases as bend radius decreases.

5. Hot Forming and Warm Forming

Working quenched and tempered plates at a temperature over the tempering temperature:Excessive temperature causes deterioration in the properties of the steel. Hot working can also change the properties of control-rolled and TMCP plates, so the customer is requested to consult JFE about specific working conditions.

6. Post Weld Heat Treatment (PWHT)

JFE-HITEN steel plates exhibit outstanding welded-joint toughness in the as-welded condition, so they do not require post-weld heat treatment to recover toughness. Quenched and tempered plates may be post-weld heat treated, if necessary, at temperatures not exceeding the tempering temperature.

For TMCP plates, please consult JFE Steel in advance.

RECOMMENDED PRACTICES FOR **WORKING AND FABRICATION**

7. Welding

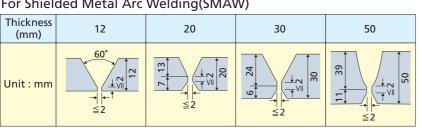
JFE-HITEN steel plates are welded by such conventional methods as shielded metal arc welding, submerged arc welding, gas metal arc welding, and electro-gas arc welding. Welding by any of these methods produces satisfactory weldments.

1) Welding materials

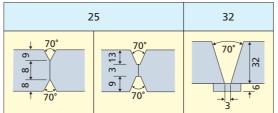
For the welding of quenched and tempered high strength steels, it is necessary to use welding rods with low hydrogen as well as automatic welding materials of high basicity and superior toughness, in order to prevent the occurrence of various possible weld defects, associated with the combination of steel plates and welding materials.

Typical welding materials are shown below.

2) Re-Baking Before Use


Low hydrogen type welding rods for shielded metal arc welding must be dried for about 1 hour at temperatures between 350 and 400°C before use. Fluxes for submerged arc welding must also be fully dried for about 1 hour at 250~350℃.

3) Edge Preparation


Edge preparation can be performed by gas cutting. When an intricate groove configuration is involved, or when high precision is required, edge preparation is performed by machining.

Typical Bevel Shapes

For Shielded Metal Arc Welding(SMAW)

For Submerged Arc Welding(SAW)

4) Preheating Treatment

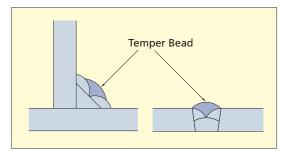
In order to determine the preheating temperature, variables including welding materials, plate thickness, welding method, environmental conditions, constraint conditions, etc., must be taken into consideration.

590N/mm² class JFE-HITEN can be butt welded without preheating, however, preheating is recommended depending on the above conditions. Preheating temperatures between 50 and 100°C are sufficient.

With higher weldability steel 'U', 'E' series, the preheating temperature may be further lowered or unnecessary.

With 690N/mm² or higher tensile strength steel plates, a higher preheating temperature between 100 and 175°C is required to prevent cold cracking, though the specific temperature varies based on the above conditions. Please consult with us. Finally, these 690N/mm² and over class HITEN involves '-LE','-EX' grades with relaxing preheating also.

5) Tack Welding


Tack welding conditions are the same as those for normal welding, however, it is recommended that welding beads be over 50mm in length. It is absolutely essential that arc striking be performed in the bevel or on other steel plate, and not on the base metal.

6) Welding

- ① In case of welding by covered electrodes, it is recommended at the outset that a back start be done for about 30mm in the groove, giving straight beading.
- ② It is recommended that arc length be as short as possible.
- 3 Weaving will impair heat input required for welding. If weaving is applied, the width of weaving must be less than 1.5 times rod diameter.
- (4) In case of SMAW for 690N/mm² and over grade, please adopt the Temper Bead Methods, as shown right.
- ⑤ Slag removal is not easy for low hydrogen type electrode, particularly compared to ilmenite type or cellulose type, but it is requested to do it by all means. Pre-heating helps to remove slag preferably.
- 6 In case of submerged-arc welding, phenomena such as embrittlement and softening at heat affected zone must be considered.

(7) Beside preheating, the control of interlayer temperature is recommended.

Typical Welding Materials

Strength	JFE-HITEN	SMAW		SM	SMAW		CO ₂ Arc Welding		rc Welding	Electro-gas Arc Welding
Strength	JEE-HITEIN	JFE Steel	KOBELCO	JFE Steel	KOBELCO	JFE Steel	KOBELCO	JFE Steel	KOBELCO	KOBELCO
590N/mm² Class	590, 610 590S, 590SL 570U2, 590U2, 610 U2 570E, 590E, 610E	KSA-86	LB62 LB62U LB62UL	KB-110 × KW-101B KB-80C × KW-101B KF-300A × KW-101B KF-300A × KW-50C	MF38 × US40	KC-60	MG60 DW60	KM-60	MIX60B	DWS60G, DWS1LG
690N/mm² Class	690, 710, 690S 690M, 710M	_	LB106	KB-80C × KW-102B	MF38 × US70	_	MG70	_	MGS70	_
780N/mm² Class	780M, 780EX 780S, 780LE	-	LB116 LB80UL	_	PFH80AK × US80BN PFH80AK × US80LT	_	MG80	_	MGS80	_
980N/mm² Class	980S 980	-	LB100B LB100J	_	PFH100A × US100A PFH100J × US100J	_	_	_	MGS100J	_

20 JFE-HITEN JFE-HITEN 21

Total Steel of Australia Pty Ltd

ABN 34 001 201 850

Administration

Suite 10, 35–37 Railway Parade Engadine, New South Wales 2233 PO Box 70 Engadine NSW 2233 Telephone: (02) 8508 4800 Fax: (02) 9520 8628 Email: admin@totalsteel.com.au

Sydney

46 Anzac Avenue Smeaton Grange, New South Wales 2567 Box 3205 Narellan DC NSW 2567 Telephone: (02) 4648 8111 Fax: (02) 4647 8011 Email: sydney@totalsteel.com.au

Melbourne

207-211 Fitzgerald Road Laverton North, Victoria 3026 PO Box 477 Laverton VIC 3028 Telephone: (03) 9369 8855 Fax: (03) 9369 8866 Email: melbourne@totalsteel.com.au

Brisbane

106 Mica Street
Carole Park, Queensland 4300
PO Box 265 Carole Park QLD 4300
Telephone: (07) 3723 9200
Fax: (07) 3271 1699
Email: brisbane@totalsteel.com.au

Perth

53-75 McDowell Street
Welshpool, Western Australia 6106
PO Box 626 Welshpool DC WA 6986
Telephone: (08) 9351 6800
Fax: (08) 9351 6868
Email: perth@totalsteel.com.au

Darwin

48 Dawson Street East Arm NT 0822 Tel: (08) 8984 4324 Fax: (08) 8947 4615

Email: darwin@totalsteel.com.au