

Total Steel

TECHNICAL BULLETIN

EH500LE Abrasion Resistant Steel Plate JFE Manufacturer's Testing

total quality total service Total Steel

CONTENTS

L	Spee	cifica	ation
	1	Mar	ufacturing Process and Available Thickness1
	2	Che	mical Composition1
	3	Мес	hanical Properties1
11	Test	Res	sults
1	Steel	Plat	es Tested
		1-1	Chemical Composition2
2	Prop	erties	s of Base Plates
		2-1	Microstructure
		2-2	Tensile Test7
		2-3	Charpy Impact Test7
		2-4	Hardness Distribution in Thickness Direction8
		2-5	Brinell Hardness Test9
		2-6	Bending Test9
3	Weld	abilit	y .
		3-1	Maximum Hardness Test10
		3-2	y-Groove Cracking Test11
4	Mech	nanic	al Properties of Welded Joints
		4-1	Welding Conditions
		4-2	Macrostructure
		4-3	Hardness Distribution in Welded Joint15
		4-4	Side Bend Test Welded Joint16
		4-5	Charpy Impact Test Welded Joints

I SPECIFICATION

1. Manufacturing Process and Available Thicknesses

Grade	Thickness	Heat Treatment
JFE-EH500LE	6 ~ 32 mm	Controlled heat treatment

2. Chemical Composition

Thickness				Chem	ical cor	npositi	ion (wi	.%)		
Thickness	С	Si	Mn	Р	S	Cr	Мо	Ti	В	Ceq (LR)
10 mm										0.55
~1911111	0.29	0.55	1.60	0.020	0.010	0.40	0.35	0.02	0.004	max
19.1 ~	max	max	max	max	max	max	max	max	max	0.58
32 mm										max

Ceq(LR)=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5

3. Mechanical Properties

Brinell hardness (3000 kgf)	Charpy impact properties Absorbed energy at -40°C(J) (Average of 3 tests)
477 ~ 556	21 min

Impact properties are guaranteed for the plate of the thickness not less than 12 mm in longitudinal direction unless otherwise specified.

1. Steel Plates Tested

1-1 Chemical Composition

Table 1: Ladle Analysis (wt.%)

С	Si	Mn	Р	S	Cr	Мо	Ti	В	Ceq (LR)	P _{CM}
0.26	0.31	1.33	0.007	0.002	0.10	0.13	0.01	0.0011	0.53	0.36

Small amount of other microalloying elements are added \$Ceq(LR)=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5\$P_{CM}=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B

Table 2: Product Analysis (wt.%)

Thickness (mm)	С	Si	Mn	Р	S	Cr	Мо	Ti	В	Ceq (LR)	Р _{СМ}
12	0.26	0.31	1.32	0.006	0.002	0.10	0.13	0.01	0.0012	0.52	0.35
20	0.26	0.32	1.34	0.006	0.002	0.10	0.13	0.01	0.0012	0.53	0.36
25	0.26	0.32	1.34	0.006	0.002	0.10	0.13	0.01	0.0012	0.53	0.36
32	0.27	0.32	1.38	0.008	0.002	0.10	0.14	0.01	0.0012	0.54	0.36

Small amount of other microalloying elements are added

Ceq(LR)=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5

P_{CM}=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B

2. Properties of base plates

2-1 Microstructure

Photo 1: Microstructure (t = 12 mm)

Photo 2: Microstructure (t = 20 mm)

Photo 3: Microstructure (t = 25 mm)

Photo 4: Microstructure (t = 32 mm)

Thickness (mm)	Specimen	Position	Direction	YS or 0.2%PS (N/mm²)	TS (N/mm²)	El (%)
12	JIS No. 5	Full Thickness	С	1317	1715	15
20	JIS No. 5	Full Thickness	С	1203	1681	17
	JIS No. 4	1/2 t	С	1280	1653	12
25	JIS No. 5	Full Thickness	С	1240	1672	18
	JIS No. 4	1/2 t	С	1193	1632	11
32	JIS No. 5	Full Thickness	С	1314	1556	22
	JIS No. 4	1/4 t	С	1320	1516	12
	JIS No. 4	1/2 t	С	1298	1465	12

Table 3 [.]	Results	of	Tensile	Test
Table 0.	ricoulio	UI.	10113110	1631

JIS No. 5: 25 mm width x 50 mm GL JIS No. 4: 14 mm diameter x 50 mm GL

2-3 Charpy Impact Test

Thickness	Specimon	Direction	Absorbed energy at -40°C (J)					
(mm)	Specifien	Direction		Each.		Ave.		
12	2 mm V-Notched	L	43	43	33	40		
20	2 mm V-Notched	L	45	36	46	42		
25	2 mm V-Notched	L	42	35	43	40		
32	2 mm V-Notched	L	34	30	31	32		
	Spec.	L		_		≥21		

Table 4: Results of Charpy Impact Test

Figure 1: Hardness Distribution in Thickness Direction

2-5 Brinell Hardness Test

Thickness (mm)	Each	Ave.
12	504, 507, 504, 501, 498	503
20	501, 495, 501, 507, 504	502
25	507, 492, 495, 501, 510	501
32	492, 488, 510, 513, 511	503
Spec.	_	477 ~ 556

Table 5: Results of Brinell Hardness Tes	of Brinell Hardness Test
--	--------------------------

2-6 Bending Test

Thickness	Direction	Specimen*		Bending radius (t : thickness of specimen)			ness of
(mm)	Direction	No.	Width (mm)	2.5 t	2.0 t	1.5 t	1.0 t
10	L		JIS No. 1 50	О	О	×	_
12	С			О	×	×	-
20	L	JIS No. 1		О	0	×	-
	С			О	О	×	_
25	L			О	О	×	-
	С			О	О	×	-
32	L			О	0	0	×
	С			О	0	0	×

Table 6: Results of Bending Test

* Total thickness

 $O: \mbox{No cracking} \ \ \mbox{X}: \mbox{Cracks}$

3. Weldability

3-1 Maximum Hardness Test

Figure 2: Test Conditions

Table 7: Welding Condi	itions
------------------------	--------

Welding method	SMAW
Thickness	20 mm
Welding material	LB-62 4.0 mm Ø (KOBELCO)
Welding conditions	170A–25V–15 cm/min
Welding heat input	17 kJ/cm
Preheating temperature	25°C, 50°C, 100°C

Table 8: Results of Maximum Hardness Test

Preheat temperature	25°C	50°C	100°C
Maximum hardness (HV10)	487	478	457

3-2 y-Groove Cracking Test

Table 10:	Welding	Conditions
-----------	---------	------------

Welding method	SMAW	GMAW CO ₂ 100%)
Thickness	20 mm	20 mm
Welding material	LB-62 4.0 mm Ø (KOBELCO)	MG-50 1.2 mm Ø (KOBELCO)
Welding conditions	170A–25V–15 cm/min	240A–30V–25 cm/min
Welding heat input	17 kJ/cm	17 kJ/cm
Preheating temperature	100°C, 125°C, 150°C	50°C, 75°C, 100°C

Figure 4: Results of y-Groove Cracking Test

Table 11: Results of y-Groove Cracking Test

Thickness (mm)	Welding method	Preheat Temperature to Prevent from Cracking (°C)
00	SMAW	125
20	GMAW	75

4. Mechanical Properties of Welded Joints

4-1 Welding Conditions

Figure 7: Edge Preparation

Table 16:	Welding	Conditions	(SMAW)
-----------	---------	------------	--------

Walding mathed	CMANA/		
weiging method	SIVIAVV		
Thickness	20 mm		
Welding materials	LB-62 4.0 mm Ø (KOBE	LCO)	
Preheat temperature	125°C		
Inter-pass temperature	≤ 250°C		
Pass	1 Pass	Other Pass	
Welding current	170A 170A		
Arc voltage	25V 25V		
Welding speed	15 cm/min 12 cm/min		
Heat input	17.0 kJ/cm	21.3 kJ/cm	

Table 17:	Welding	Conditions	(GMAW)
-----------	---------	------------	--------

Welding method	GMAW (CO ₂ 100%)		
Thickness	20 mm		
Welding materials	MG-50 1.2 mm Ø (KOBI	ELCO)	
Preheat temperature	75°C		
Inter-pass temperature	≤ 250°C		
Pass	1 Pass Other Pass		
Welding current	220 ~ 240A 220 ~ 240A		
Arc voltage	30V 30V		
Welding speed	25 cm/min 20 cm/min		
Heat input	15.8 ~17.3 kJ/cm	19.8 ~21.6 kJ/cm	

4-2 Macrostructure

(a) SMAW

(b) GMAW

Photo 5: Macrostructure

4-3 Hardness Distribution in Welded Joint

Figure 8: Hardness Distribution in Welded Joint

4-4 Side Bend Test of Welded Joint

Bending Radius: 20 mm Bending Test Results: Good

Photo 6: Results of Side Bend Test (SMAW)

Bending Radius: 20 mm Bending Test Results: Good

Photo 7: Results of Side Bend Test (GMAW)

Figure 9: Sampling Position of Test Specimens

	Absorbed Energy					
Notch position	Test temperature (°C)	Each (J)	Ave (J)	Test temperature (°C)	Each (J)	Ave (J)
WM	0	122 121 126	123	-40	42 75 69	62
FL	0	124 162 138	141	-40	84 104 68	85
HAZ	0	167 187 162	172	-40	135 114 89	113

Table 18: Results of Charpy Impact Test (SMAW)

Table 19: Results of Charpy Impact Test (GMAW)

Notch position	Absorbed Energy					
	Test temperature (°C)	Each (J)	Ave (J)	Test temperature (°C)	Each (J)	Ave (J)
WM	0	136 119 121	125	-40	49 62 35	49
FL	0	160 157 143	153	-40	50 40 52	47
HAZ	0	180 181 179	180	-40	179 185 138	167

WM : Weld Metal

FL : Fusion Line

HAZ : Heat Affected Zone

Total Steel of Australia Pty Ltd

ABN 34 001 201 850

Administration

Suite 10, 35–37 Railway Parade Engadine, New South Wales 2233 PO Box 70 Engadine NSW 2233 Telephone: (02) 8508 4800 Fax: (02) 9520 8628 Email: admin@totalsteel.com.au

Sydney

46 Anzac Avenue Smeaton Grange, New South Wales 2567 Box 3205 Narellan DC NSW 2567 Telephone: (02) 4648 8111 Fax: (02) 4647 8011 Email: sydney@totalsteel.com.au

Melbourne

207-211 Fitzgerald Road Laverton North, Victoria 3026 PO Box 477 Laverton VIC 3028 Telephone: (03) 9369 8855 Fax: (03) 9369 8866 Email: melbourne@totalsteel.com.au

Brisbane

106 Mica Street Carole Park, Queensland 4300 PO Box 265 Carole Park QLD 4300 Telephone: (07) 3723 9200 Fax: (07) 3271 1699 Email: brisbane@totalsteel.com.au

Perth

53–75 McDowell Street Welshpool, Western Australia 6106 PO Box 626 Welshpool DC WA 6986 Telephone: (08) 9351 6800 Fax: (08) 9351 6868 Email: perth@totalsteel.com.au

total quality total service Total Steel

JFE Steel Corporation

Head Office 2-2-3 Uchisaiwaicho, Chiyoda-ku, Tokyo